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Abstract
We consider nonlinear Klein–Gordon wave equations and illustrate that
standard discretizations thereof (involving nearest neighbours) may preserve
either standardly defined linear momentum or standardly defined total energy
but not both. This has a variety of intriguing implications for the ‘non-
potential’ discretizations that preserve only the linear momentum, such as
the self-accelerating or self-decelerating motion of coherent structures such as
discrete kinks in these nonlinear lattices.

PACS numbers: 05.45.−a, 05.45.Yv, 63.20.−e

1. Introduction

In the last two decades, the interplay of nonlinearity and spatial discreteness has been
increasingly recognized as vital for the understanding of a variety of physical systems [1]. Such
contexts range from calcium waves in living cells [2] to the propagation of action potentials
through the cardiac tissue [3] and from chains of chemical reactions [4] to applications in
superconductivity and Josephson junctions [5], nonlinear optics and fibre/waveguide arrays
[6], complex electronic materials [7], Bose–Einstein condensates [8] or the local denaturation
of the DNA double strand [9].

On the other hand, spatially discrete systems (of coupled nonlinear ordinary differential
equations) are also relevant as discretizations and computational implementations of the
corresponding continuum field theories that are applicable to a variety of contexts such as
statistical mechanics [10], solid state physics [11], fluid mechanics [12] and particle physics
[13] (see also references therein). Nonlinear Klein–Gordon type equations are a prototypical
example among such wave models and their variants span a diverse range of applications
including Josephson junctions in superconductivity, cosmic domain walls in cosmology,
elementary particles in particle physics and denaturation bubbles in the DNA, among others;
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see e.g. the review of [14] for the various applications from a nonlinear science viewpoint, [15]
for an exposition with a particle physics flavour, and [16] for a recent review of the relevant
biophysics applications.

The many-body character of interatomic interactions might suggest that the inclusion
of the nearest neighbours in the discretization of the background potential can give a more
adequate physical model than that obtained by the classical on-site discretizations. However,
even two-body interactions can result in a physically meaningful model including nearest
neighbours [17].

Recently, a number of discrete Klein–Gordon equations free of the Peierls–Nabarro
potential has been systematically constructed. The Hamiltonian set of such models was
obtained by Speight and co-workers [18] using the Bogomol’nyi argument [19]. Then the
momentum-conserving discretizations [20] were obtained. In the recent work of [21] it was
shown that, in all cases, PNp-free discrete Klein–Gordon models can be formulated by using
a two-point discrete version of the first integral of a static continuum Klein–Gordon equation.
The latter equation is a two-point nonlinear algebraic equation from which the exact static
solutions of the three-point discretizations resulting into PNp-free models can be found (see
also [22] where a similar idea was reported for the particular case of the φ4 field). Another
Hamiltonian PNp-free model has been very recently discovered by Cooper et al [23]. Out of
these PNp-free models, it may be worth highlighting [17] for the reason that it illustrates that
such models are not meant only as mere discretizations of the continuum model, but may also
be physically relevant dynamical systems in their own right. This is an additional reason that
establishes the value of examining different discretizations, beyond the obvious one of finding
faithful representations of the corresponding continuum limit.

In this communication, we examine some of the key properties that ensue when
discretizing nonlinear Klein–Gordon (KG) equations, using nearest-neighbour approximations
(which are the most standard ones implemented in the literature; see e.g., [1]). In particular, we
focus on the physically relevant invariances of the continuum equation (more specifically, the
conservation of the linear momentum and of the total energy of the system) and illustrate the
surprising result that if we demand that the energy be conserved, then the momentum cannot
be conserved, while if we demand that the momentum be conserved then the energy cannot
be conserved (resulting in a so-called non-potential model [24]). Clearly, this is a somewhat
counter-intuitive result as one might expect that using techniques from symplectic integration
[25] or integrable systems [26], this obstruction may be overcome. However, we note that, to
the best of our knowledge there is no general methodology for doing so, and, in fact, many of
the relevant KG models such as those involving the φ4 or the Morse potential are not believed
to be integrable even in their continuum limit (hence, it would be highly non-trivial, if at all
possible, to devise e.g. integrable discretizations thereof).

Our presentation will be structured as follows. First, we will provide the general
mathematical setting of KG equations and study their discretizations that conserve linear
momentum and energy, comparing and constructing the properties of the two. Then, we are
going to give an application of our considerations to the physically relevant φ4 model, i.e.,
the ubiquitous double well potential. Finally, we will summarize our conclusions and discuss
future directions.

2. Setup and analytical results

We consider the Lagrangian of the Klein–Gordon field,

L =
∫ ∞

−∞

[
1

2
φ2

t − 1

2
φ2

x − V (φ)

]
dx, (1)
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and the corresponding equation of motion,

φtt = φxx − V ′(φ). (2)

Assuming that the background potential V (φ) can be expanded in Taylor series we write

V ′(φ) =
∞∑

s=0

σsφ
s. (3)

For brevity, when possible, we will use the notations

φn−1 ≡ l, φn ≡ m, φn+1 ≡ r. (4)

We start with a general proof of our main statement, namely that discretizations
that preserve linear momentum and energy are mutually exclusive for nearest-neighbour
discretizations. As was shown in [20], the standard discretization of equation (2) that preserves
the discrete analogue of the linear momentum, defined in a standard way,

M =
∞∑

n=−∞
φ̇n (φn+1 − φn−1) , (5)

is one of the forms

m̈ = C (l + r − 2m) − F(r,m) − F(m, l)

r − l
, (6)

where C = 1/h2, where h is the lattice spacing, and the derivative of F is equal to V in the
continuum limit (C → ∞). Then,

dM

dt
=

∑
n

φ̈n(φn+1 − φn−1) =
∑

n

[H(φn+1, φn) − H(φn, φn−1)] = 0, (7)

where H(r,m) = C(r2 + m2 − 2mr) − F(r,m), and the terms φ̇n(φ̇n+1 − φ̇n−1) cancel out as
a telescopic sum.

However, if the model is potential, for nearest-neighbour discretizations the nonlinear
term will be of the form Ṽ (r,m) such that the Lagrangian can be written as

L =
∑

n

[
1

2
φ̇2

n − C

2
(φn+1 − φn)

2 − Ṽ (φn+1, φn)

]
, (8)

where the first term gives the kinetic energy, K, and the two other terms give the opposite of
the potential energy, −P , so that the total energy is E = K + P . However, then a model that
would enforce both energy and momentum conservation would have to satisfy

F(r,m) − F(m, l)

r − l
= ∂

∂m
[Ṽ (r,m) + Ṽ (m, l)]. (9)

After multiplying with r − l, this, in turn, implies that the cross terms involving all 3 of r,m

and l should be presentable in the form

r
∂Ṽ (m, l)

∂m
− l

∂Ṽ (r,m)

∂m
= P(r,m) − P(m, l). (10)

This is satisfied only if Ṽ (x, y) is a (symmetric) quadratic function in its arguments. However,
this is incompatible with the nonlinear nature of the model. Hence, it is not possible to satisfy
both conservation laws at once.

Let us now derive the general discrete Klein–Gordon model of the form of equation (6)
conserving momentum. For the polynomial background forces equation (3), the nonlinear
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term of equation (6) can be presented as the sum of s-order terms

B(l,m, r) = F(r,m) − F(m, l)

r − l
=

∞∑
s=0

Bs(l,m, r), (11)

with

Bs =
s∑

i=0

s∑
j=i

bij,sr
imj−i ls−j , (12)

where
s∑

i=0

s∑
j=i

bij,s = σs, (13)

is the continuity constraint.
In the continuum limit one has l → m and r → m and thus, equation (11) together with

equation (13) ensure the desired limit, V ′(φ). Furthermore, equation (12) takes into account
all possible combinations of powers of l, m and r. Coefficients bij,s make a triangular matrix
of size (s + 1) × (s + 1). Let us find the coefficients bij,s to satisfy equation (11). We write

(r − l)Bs =
s∑

i=0

s∑
j=i

bij,sr
i+1mj−i ls−j −

s∑
i=0

s∑
j=i

bij,sr
imj−i ls−j+1. (14)

Terms containing both l and r should be cancelled out because they do not fit the representation
of equation (11). This can be achieved by setting bij,s = b(i+1)(j+1),s , i.e., coefficients in each
diagonal of the triangular matrix must be equal. The simplified expression reads

(r − l)Bs =
s∑

i=0

bis,sr
i+1ms−i −

s∑
i=0

b0i,sm
ils−i+1. (15)

To symmetrize the result, we add and subtract b00,sm
s+1

(r − l)Bs = b00,s(r
s+1 + ms+1) − b00,s(m

s+1 + ls+1)

+
s∑

i=1

b0(s−i+1),sr
ims−i+1 −

s∑
i=1

b0i,sm
ils−i+1, (16)

where we shifted the summation index by 1 in the first sum and also used the equality of the
diagonal coefficients. The desired representation is obtained for arbitrary b00,s and arbitrary
b0i,s = b0(s−i+1),s for i > 0. Summing up, (i) the coefficients bij,s within each diagonal are
equal, (ii) the coefficients on the main diagonal can be chosen arbitrarily, and (iii) the terms
on ith super-diagonal (i > 0) must have the same coefficients as the terms on (s − i + 1)th
diagonal (and these can also be chosen arbitrarily).

For Bs the number of super-diagonals is s so that the number of free coefficients is
1 + �s/2�, where �x� is lowest integer greater than or equal to x. We must also take into
account the continuity constraint of equation (13) and the number of free coefficients becomes
�s/2�.

For example, the coefficients of B3 are

bij,3 =




b00,3 b01,3 b02,3 b01,3

b00,3 b01,3 b02,3

b00,3 b01,3

b00,3


 ,

4b00,3 + 4b01,3 + 2b02,3 = σ3.

(17)
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Since the model equation (6) is translationally invariant, the static kink is free of the
Peierls–Nabarro potential (PNp) [20], i.e., the periodic potential that nonlinear waves have to
overcome to move by one lattice site [14] (see also references therein). This is an important
qualitative difference with respect to the conventional discretization when, in equation (1),
V (φ) is substituted with V (φn) and thus, in the equation of motion equation (2), V ′(φ)

becomes V ′(φn).
Another class of Klein–Gordon models which support energy conservation and sustain

static kinks but which are free of PNp has been derived by Speight and collaborators [18].
In such models the background potential term of equation (1), P = ∫

V (φ) dx, should be
discretized as

P =
∑

n

(
G(φn+1) − G(φn)

φn+1 − φn

)2

, with [G′(φ)]2 = V (φ). (18)

3. Numerical results/model comparison

We now examine various models proposed as discretizations of the continuum field theory
in the context of perhaps one of the most famous such examples, namely the double-well φ4

model [10, 11, 13] (see also the review [15]).
The discrete Klein–Gordon model conserving momentum is given by equation (6) with

the nonlinear term of equation (11) where the coefficients bij,s are as described in the previous
section. The continuum φ4 model has the background potential V (φ) = (1 − φ2)2/4, hence
V ′(φ) = −φ + φ3 so that in equation (3) all σs = 0 except for σ1 = −σ3 = −1. The
momentum-preserving discretization then reads

m̈ = (C + α)(l + r − 2m) + m − β(l2 + lr + r2) + βm(l + r + m) − γ (l3 + r3 + l2r + lr2)

− δm(l2 + m2 + r2 + lr) − 1
2 (1 − 4γ − 4δ)m2(l + r), (19)

where α = −b00,1, β = b00,2, γ = b00,3, δ = b01,3 are free parameters and we did not include
the terms with s > 3.

The model of equation (19) will be compared to the model obtained from equation (18)
in φ4 case [18], namely

m̈ = (
C + 1

6

)
(l + r − 2m) + m − 1

18 [2m3 + (m + l)3 + (m + r)3], (20)

and also to the ‘standard’ φ4 discretization, i.e.,

m̈ = C(l + r − 2m) + m − m3. (21)

If in equation (19), α = β = γ = δ = 0, then the models of equation (19) and
equation (20) have the same linear vibration spectrum (i.e., dispersion relation ω = ω(κ)) for
the vacuum solution φn = ±1, namely ω2 = 2 + (4C − 2) sin2(κ/2). This can be compared
to the spectrum of the vacuum of equation (21), ω2 = 2 + 4C sin2(κ/2).

We analyse the kink internal modes (i.e., internal degrees of freedom [27]) for these
three models. First, we determine the kink-like heteroclinic solution by means of relaxational
dynamics. Then, the linearized equations are used in a lattice of N = 200 sites to obtain
N eigenfrequencies and the corresponding eigenmodes. We are particularly interested in the
eigenfrequencies which lie outside the linear vibration band of vacuum solution and thus are
associated with the kink internal modes. It is worthwhile to note that the eigenproblem for
models conserving energy, equations (20) and (21), has a symmetric Hessian matrix while
the non-self-adjoint problem for the momentum conserving model equation (19) results in a
non-symmetric matrix.
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(a) (b) (c)

Figure 1. Upper panels: boundaries of the linear spectrum of the vacuum (solid lines) and kink
internal mode frequencies (dots) as functions of the lattice spacing h = 1/

√
C. Lower panels:

time evolution of kink velocity for different initial velocities and h = 0.7. The results are shown
for (a) classical φ4 model, equation (21), (b) PNp-free model conserving energy, equation (20),
and (c) PNp-free model conserving momentum, equation (19), with α = β = γ = δ = 0.

The top panels of figure 1 present the boundaries of the linear vibration spectrum of the
vacuum (solid lines) and the kink internal modes (dots) as the functions of lattice spacing
h for (a) the classical φ4 model of equation (21), (b) the PNp-free model of equation (20)
conserving energy, and (c) the PNp-free model of equation (19) conserving momentum. In
PNp-free models kinks possess a zero frequency, Goldstone translational mode similarly to the
continuum φ4 kink. Hence, the static kink can be centred anywhere on the lattice. The results
presented in figure 1 are for the kink situated exactly between two lattice sites. This position
is the stable position for the classical φ4 discrete kink [27]. Since all three discrete models
share the same continuum (φ4) limit, their spectra are very close for small h(<0.5). We
found that the model equation (19) may have kink internal modes lying above the spectrum
of vacuum, e.g., for α = 1/2, β = 0, γ = 1/4 and δ = 0. Such modes are short-wavelength
ones, with large amplitudes (energies) and they do not radiate because of the absence of
coupling to the linear phonon spectrum.

Perhaps more interesting are the implications of such discretizations on the mobility of
these localized coherent structures. In the PNp-free models, equations (19) and (20), the kink
was launched using a perturbation along the Goldstone mode to provide the initial kick. In
the classical model equation (21) for this purpose we employed the imaginary frequency (real
eigenvalue) unstable eigenmode for a kink initialized at the unstable position (a ‘site-centred’
kink). In all cases the amplitude of the mode is related to the initial velocity of the kink. In the
bottom panels of figure 1 we present the time evolution of the kink velocity for different initial
velocities and h = 0.7 for the three discretizations. The results suggest that the mobility of the
kink in the classical φ4 model presented in (a) is much smaller than in the PNp-free models,
(b) and (c). Furthermore, a very interesting effect of kink self-acceleration can be observed
in panel (c). Here there exists a selected kink velocity v∗ ≈ 0.637 and kinks launched with
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(a) (b)

Figure 2. Trajectories of particles (a) in the model of equation (19) with h = 0.7 when the kink
moves with a steady velocity v∗ (see figure 1(c), bottom panel) and (b) for the continuum φ4 kink.

v > v∗, in a very short time adjust their velocities to v∗. More surprisingly, the velocity
adjustment is observed even for kinks launched with v < v∗. In the steady-state regime, when
the kink moves with v = v∗, it excites (in its tail) the short-wave oscillatory mode even though
in front of the kink the vacuum is not perturbed.

These results generate the question of where the energy for the self-acceleration and
vacuum excitation comes from. In figure 2(a) we show the trajectories of four neighbouring
particles when a kink moving with v = v∗ (see figure 1(c), bottom panel) moves through. For
comparison, in (b) the trajectories for the classical φ4 kink,

φn(t) = tanh[ρ(nh − vt)], (22)

where ρ = [2 − 2v2]−1/2, are shown. In both cases the trajectories are identical and shifted
with respect to each other by t = h/v, but in (b) they are the odd functions with respect
the point φn = 0 while in (a) they are not. The work done by the background forces,
equation (11), to move the nth particle from one energy well to another is Wn =
− ∫ ∞

−∞ ṁB(l,m, r) dt . For the φ4 model equation (19) with β = γ = δ = 0, the nonlinear part
of B(l,m, r) reduces to B(l,m, r) = (1/2)m2(l + r). Obviously, Wn = 0 for any trajectory
for the classical φ4 kink. It is straightforward to demonstrate that Wn = 0 for the kink in the
momentum-conserving model for a trajectory having the odd symmetry, e.g., equation (22).
However, if a term breaking the odd symmetry, e.g., ε cosh−1[θ(nh − vt)], is added to
equation (22), the work becomes nonzero, Wn = π

2 ε(ε2 + 1)[cosh(ρh) − 1]3/ sinh4(ρh),
where we set for simplicity θ = ρ. Numerically we found that Wn can be positive or negative
depending on ρ, θ and the kink velocity, v. This simple analysis qualitatively explains the
kink self-acceleration or deceleration and the vacuum excitation. The energy for this comes
from the breaking of the odd symmetry of particle trajectories, which is possible in the case
of path-dependent background forces. It is, thus, very interesting to highlight the distinctions
between the ‘regular’ discrete models, the PNp-free, energy conserving discrete models and
the PNp-free, momentum conserving discrete models. The first ones lead to rapid dissipation
of the wave’s kinetic energy due to the PN barrier. The second render the dissipation far slower
in time. Finally the third may even sustain self-accelerating waves and locking to a particular
speed due to the non-potential nature of the relevant model.

Let us describe one physical phenomenon, namely, flutter, where the self-acceleration
effect, similar to that observed in our simulations, can be observed. Consider an elastic body
(such as a wing) placed in a flow of gas. In stable regimes, the wing does not accept the
energy from the gas flow. For some gas velocities, the flutter instability can occur, resulting
in the appearance of vibration of the wing with an amplitude growing in time. In this regime
the wing obtains the energy from the gas flow. If the wing is strong enough to sustain high-
amplitude vibrations, this regime can be stabilized by the nonlinearity in the elastic response
of the wing and by increased energy dissipation. This picture is in good qualitative agreement
with kink dynamics presented in the bottom panel of our figure 1(c). Slow kinks move with
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constant velocity with no energy exchange with the surroundings. Faster kinks show the
self-acceleration effect due to the energy exchange with the surroundings. Simultaneously,
the energy lost for vacuum excitation increases (see figure 2(a)) and finally the motion is
stabilized.

4. Conclusions and future challenges

The statement that Klein–Gordon discrete model cannot conserve energy and momentum
simultaneously was proved for the case of standard nearest-neighbour discretizations. This
raises the issue of how to gauge the ‘adequacy’ of a discretization scheme with respect to the
continuum model dynamics. This is also important because it offers significant new insights
on what type of results one should be expecting for different types of discretizations as regards
their dynamical behaviour and how these should be expected to differ from the corresponding
continuum limit or from those of other discretizations. In view of this question, a number
of characteristic similarities and differences between energy- and momentum-conserving
discrete models were highlighted. The momentum conserving Klein–Gordon system with
non-potential background forces discussed here differs from other path-dependent systems,
e.g., having friction and/or ac drive, in the sense that the viscosity and external forces are not
explicitly introduced. This makes the dynamics of the system somewhat ‘peculiar’ since, for
instance, as it was demonstrated, the existence, the intensity and the sign of energy exchange
with the surroundings depends on the symmetry and other characteristics of the motion.
Dynamics in non-Hamiltonian systems are less canonical and their analysis becomes more
complicated but this does not mean that they are less physically important. In fact, in actual
practice, any real physical system is an open system. Sometimes the energy exchange with
the surroundings can be neglected, but sometimes it plays a crucial role, as, e.g., in the case of
flutter mentioned above which bears interesting qualitative resemblances to the kink dynamics
observed herein.

Another area where the faithfulness of the relevant discretizations to their continuum
limits can be seriously tested is the outcome of solitary wave collisions. This is a rather
stringent test, especially given the sensitivity/complexity of the corresponding phenomenology
[13, 15] (see also [28]). In fact, it has already been argued that occasionally some of the
PNp-free models are not necessarily good representations of the continuum dynamical
behaviour unless the lattice spacing is very small [29]. A more general and systematic
comparison of this aspect of different discretizations is still lacking and is an especially
interesting problem for future study. Our preliminary results in this direction are in line with
the sensitivity across discretizations observed in [29] and seem to indicate that only sufficiently
near the limit of h → 0 (typically for h < 0.1 or so), one should expect to observe the same
phenomenology across discretizations. The careful and detailed analysis of this problem is
deferred to a future study.

In the same context (of collisions), however, let us add a few relevant notes. The
number of conserved quantities is very important for the prediction of the outcome of solitary
wave collisions for nearly integrable models, e.g., weakly discrete versions of the integrable
continuum equations, such as the sine-Gordon equation, utt − uxx = sin u, [30]. In this case,
if the number of degrees of freedom of the colliding solitons is greater than the number of
quantities conserved with high accuracy, then the near-separatrix energy exchange is possible
for particular collision phases [31]. The intensity of near-separatrix energy exchange is
proportional to h, while the other manifestations of inelasticity of collision, such as emission
of radiation and excitation of soliton’s internal modes, are proportional to h2 and thus, can
be neglected for small h. A sine-Gordon kink has one free parameter (velocity) while in the
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regime of weak discreteness the sine-Gordon equation conserves energy and momentum (one
of these quantities exactly and another one with a high accuracy), and the near-separatrix
energy exchange is possible only in three-soliton collisions, e.g., in collisions between a kink
and a breather. As for the strongly discrete systems, collisions can be purely elastic only under
condition of complete integrability. However, for the Klein–Gordon equation in the form of
equation (2), integrable discretizations are not known. We also do not know a systematic
study of the influence of the number and type of conserved quantities on the inelasticity of
soliton collisions in the highly-discrete systems. In the case of high discreteness, the absence
or presence of the Peierls–Nabarro potential can be very important not only with respect to
the propagation ability of solitons but also for the outcome of their collisions. Collisions in
the non-Hamiltonian systems, for solitons in the regime of steady motion with constant speed,
at the best of our knowledge, is a completely unexplored area.

One natural question that the astute reader may pose is how to overcome the limitations
imposed on the choice of discretization by our result. While we do not provide a complete
answer to this admittedly difficult, as much as it is important, question, we offer the following
comments. The response depends to some extent on the scope of the study. If the scope is
to represent the continuum limit within a desired accuracy, then one can use lattice models
with spacings small enough that will enforce the accuracy sought. On the other hand, if the
purpose is to devise a discretization that does not have this problem (or the problem is too
computationally expensive to tackle with the above-implied choice of h), then we do not have
an answer to offer beyond saying that one should search for such discretizations outside the
conditions of the present theorem. For example, one can try to include next-nearest neighbours
in the discretization, or to obtain a non-standard momentum definition/conservation law with
the right continuum limit.

This illustrates the need for further investigation of the intriguing dynamic properties
of such non-potential models in both lattice and continuum settings, especially given the
relevance of such path-dependent forces in various applications such as, e.g., aerodynamic
and hydrodynamic forces, the forces induced in automatic control systems and others. Such
studies are in progress and will be reported in future publications.
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